Structural basis of rotavirus strain preference toward N-acetyl- or N-glycolylneuraminic acid-containing receptors.
نویسندگان
چکیده
The rotavirus spike protein domain VP8* is essential for recognition of cell surface carbohydrate receptors, notably those incorporating N-acylneuraminic acids (members of the sialic acid family). N-Acetylneuraminic acids occur naturally in both animals and humans, whereas N-glycolylneuraminic acids are acquired only through dietary uptake in normal human tissues. The preference of animal rotaviruses for these natural N-acylneuraminic acids has not been comprehensively established, and detailed structural information regarding the interactions of different rotaviruses with N-glycolylneuraminic acids is lacking. In this study, distinct specificities of VP8* for N-acetyl- and N-glycolylneuraminic acids were revealed using biophysical techniques. VP8* protein from the porcine rotavirus CRW-8 and the bovine rotavirus Nebraska calf diarrhea virus (NCDV) showed a preference for N-glycolyl- over N-acetylneuraminic acids, in contrast to results obtained with rhesus rotavirus (RRV). Crystallographic structures of VP8* from CRW-8 and RRV with bound methyl-N-glycolylneuraminide revealed the atomic details of their interactions. We examined the influence of amino acid type at position 157, which is proximal to the ligand's N-acetyl or N-glycolyl moiety and can mutate upon cell culture adaptation. A structure-based hypothesis derived from these results could account for rotavirus discrimination between the N-acylneuraminic acid forms. Infectivity blockade experiments demonstrated that the determined carbohydrate specificities of these VP8* domains directly correlate with those of the corresponding infectious virus. This includes an association between CRW-8 adaption to cell culture, decreased competition by N-glycolylneuraminic acid for CRW-8 infectivity, and a Pro157-to-Ser157 mutation in VP8* that reduces binding affinity for N-glycolylneuraminic acid.
منابع مشابه
The Kinetic and Thermal Degradation Studies of N-(4-Acetyl-phenyl)-acetimidic Acid Pyridine-3-yl ester Metal(II) Complexes
Schiff base complexes of transition metals are of particular interest to inorganic chemists because of their structural, spectral and chemical properties, which are often strongly dependant on the nature of the ligand structure. Large number of metal (II) complexes with Schiff-base ligands has been extensively studied for their interesting structural specialties, applications and properties. Th...
متن کاملSpecificity and affinity of sialic acid binding by the rhesus rotavirus VP8* core.
Nuclear magnetic resonance spectroscopy demonstrates that the rhesus rotavirus hemagglutinin specifically binds alpha-anomeric N-acetylneuraminic acid with a K(d) of 1.2 mM. The hemagglutinin requires no additional carbohydrate moieties for binding, does not distinguish 3' from 6' sialyllactose, and has approximately tenfold lower affinity for N-glycolylneuraminic than for N-acetylneuraminic ac...
متن کاملRelative roles of GM1 ganglioside, N-acylneuraminic acids, and α2β1 integrin in mediating rotavirus infection.
UNLABELLED N-acetyl- and N-glycolylneuraminic acids (Sia) and α2β1 integrin are frequently used by rotaviruses as cellular receptors through recognition by virion spike protein VP4. The VP4 subunit VP8*, derived from Wa rotavirus, binds the internal N-acetylneuraminic acid on ganglioside GM1. Wa infection is increased by enhanced internal Sia access following terminal Sia removal from main glyc...
متن کاملStructure and function of a ganglioside receptor for porcine rotavirus.
A ganglioside fraction isolated from pooled intestines from newborn to 4-week-old piglets, which we previously partially characterized and showed to specifically inhibit the binding of porcine rotavirus (OSU strain) to host cells (M. D. Rolsma, H. B. Gelberg, and M. S. Kuhlenschmidt, J. Virol. 68:258-268, 1994), was further purified and found to contain two major monosialogangliosides. Each gan...
متن کاملThe interaction of wheat germ agglutinin with sialoglycoproteins. The role of sialic acid.
The role of sialic acid in the interaction of sialoglycoproteins with wheat germ agglutinin was investigated by using several well characterized saccharides and sialoglycoconjugates. N-Acetylneuraminic acid and neuramin 2 + 3 lactose, in addition to N-acetyl-Dglucosamine and its fil-+ 4 oligomers were found to be inhibitors of wheat germ agglutinin-induced hemagglutination. Neuraminic acid-/?-m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 86 24 شماره
صفحات -
تاریخ انتشار 2012